Error estimate of a finite element method using stress intensity factor
نویسندگان
چکیده
منابع مشابه
A posteriori error estimate for the mixed finite element method
A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Accurate Determination of Stress Intensity Factor for Interface Crack by Finite Element Method
This paper presents the simple method to determine the complex stress intensity factor of interface crack problem by the finite element method. The proportional method is extended to the interface crack problem. In the present method, the stress values at the crack tip calculated by FEM are used and the stress intensity factors of interface crack are evaluated from the ratio of stress values be...
متن کاملStress Intensity Factor of Radial Cracks for Rotating Disks and Cylinders using Average Stress Method
This article utilizes the average stress method to obtain the stress intensity factor of rotating solid and hollow disks/cylinders containing a radial crack. It is assumed that the cracks are located radially at center, internal or external radius of the geometry. Results are shown for both of the plane stress and plane strain assumptions and are validated against the known data introduce...
متن کاملA Priori Error Estimate of a Multiscale Finite Element Method for Transport Modeling
This work proposes an a priori error estimate of a multiscale finite element method to solve convection-diffusion problems where both velocity and diffusion coefficient exhibit strong variations at a scale which is much smaller than the domain of resolution. In that case, classical discretization methods, used at the scale of the heterogeneities, turn out to be too costly. Our method, introduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2018
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2018.08.035